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ASSESSING AND COMPARING BY SPECIFIC METRICS THE 

PERFORMANCE OF 15 MULTIOBJECTIVE OPTIMIZATION 

METAHEURISTICS WHEN SOLVING THE PORTFOLIO 

OPTIMIZATION PROBLEM  

 
Abstract. The financial market has undergone a major revolution in recent 

decades with the advance and spread of multiobjective optimization metaheuristics, 
which can be more successfully applied to various aspects of financial decisions. 

Portfolio optimization is one of them. The purpose of this paper is to adapt, 

implement in Matlab, assess and compare the performance of 15 metaheuristics 

belonging to four different classes (NSGA, MOPSO, MOEA/D and SPEA classes) 
when applying to the Markowitz’s Portfolio Optimization Problem. For comparing 

the performance of these algorithms, we use several specific metrics quantifying 

the convergence and/or the diversity of the approximate Pareto front against the 
true Pareto front. The optimal portfolios in the sense of Pareto are selected from a 

universe of 20 assets listed on the Bucharest Stock Exchange. 

Keywords: Multiobjective optimization metaheuristics, portfolio 
optimization, performance metrics, convergence, diversity.  
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1. Introduction 
 

The Modern Portfolio Theory is a subject that has generated a lot of 

research in the last sixty years, in particular since Henry Markowitz (1952) 
revolutionized the financial landscape with his Mean-Variance model. It consists of 

defining an efficient portfolio, that is, one that has a minimum level of risk for a 

given expected return or, equivalently, a maximum expected return for a given 

level of risk. 
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Many of the optimization problems that arise in the real world present 
multiple conflicting objectives. The portfolio selection problem is a typical 

example of a multiobjective optimization problem. It can now benefit from the 

spectacular advances in the field of Evolutionary Computing, where an impressive 
number of metaheuristics have been specifically designed to handle multiobjective 

optimization problems. 

A multiobjective optimization problem (MOP) can be defined as: 

MOP = {
minF(x) = (f1(x), f2(x), … , fn(x))

subject to x ∈ S
} (1) 

where n (n ≥ 2) is the number of objectives and x = (x1, x2, …, xk) is the vector that 

represents the decision variables. The search space S represents the decision space 

of the MOP, or the set of feasible solutions. The space to which the objective 
vector belongs is called the objective space. The set Y = F(S) represents the 

feasible points in the objective space.  F(x) = (f1(x), f2(x), …, fn(x)) is the vector of 

objectives to be optimized and y = F(x) = (y1, y2, …, yn) is a point in the objective 
space, with yi=fi(x). 

 
Figure 1. Correspondence between the search space and the objective space 

 

Ideally, one would like to obtain a solution minimizing all the objectives. 

Suppose that the optimum for each objective is known to be optimized separately. 

A point y∗ = (y1
∗, y2

∗ , … , yn
∗ ) is an ideal vector if it minimizes each 

objective function fi in F(x), that is: 

yi
∗ = min(fi(x)),      x ∈ S,   i ∈ [1, n] (2) 

The ideal vector is generally a utopic solution in the sense that it is not 

usually a feasible solution in the decision space. Most often, in MOPs with 
contradictory objectives there is no single solution that can be considered the best, 

but a set of alternatives that represent the best compromises among all the 

objectives, in the sense that each solution is better than the others in some 

objective, but none is better than another in all objectives simultaneously. This fact 
implies that it is not possible to reduce an objective without worsening, at least, one 

of the others. 

Multiobjective optimization methods are based on important concepts such 
as dominance, Pareto optimality, Pareto optimal set or Pareto fronts. The concept 

of dominance is the basis of many algorithms to solve multi-objective problems 
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and is essential to recognize the set of optimal solutions. It is applied when 
comparing two solutions and the corresponding associated objective values. We 

say that a solution x1 dominates another solution x2, if both conditions 1 and 2 are 

true: 

1.Solution x1 is not worse than x2 in all objectives, fj (x1) ≤ fj(x2) for all 
values j = 1, 2, ..., m (minimum problem). 

2.Solution x1 is strictly better than x2 for at least one objective, fj(x1) < 

fj(x2) for at least one value j = 1, 2, ..., m (minimum problem). 

A solution x* ∈ S is Pareto optimal if for all x∈S, F(x) does not dominate 

F(x*), i.e.: 

𝐹(𝑥)¬≺ 𝐹(𝑥∗) (3) 

In MOPs we can have a set of solutions known as the Pareto optimal set. 
For a given MOP(F, S), the Pareto optimal set is defined as follows: 

𝑃∗ = {𝑥 ∈ 𝑆 | ∄𝑥′ ∈ 𝑆,   𝐹(𝑥′) < 𝐹(𝑥)} (4) 

The image of this set in the objective space is known as the Pareto front. 

For a given MOP(F, S) and its corresponding Pareto optimal set  P*, the Pareto 

front is defined as: 

𝑃𝐹∗ = {𝐹(𝑥),   𝑥 ∈ 𝑃∗} (5) 

Obtaining the Pareto front of an MOP is the main objective of the 

multiobjective optimization. However, since a Pareto front normally contain an 
infinite number of points, a good approximation to this front that contains a limited 

number of Pareto solutions may also be useful. These solutions should be as close 

as possible to the exact or true Pareto front and, in addition, should present a 
uniform distribution. If either of these two properties is not met, the approximation 

obtained may not be useful to the decision maker who must have complete 

information about the Pareto front. 

Over the years many techniques for solving multi-objective optimization 
problems have been developed. The use of Evolutionary Algorithms (EAs) for the 

treatment of MOPs proved to be of a particular interest, both theoretical and 

practical. It has led to the so-called Multiobjective Evolutionary Algorithms 
(MOEAs). MOEAs belong to the category of population-based metaheuristics and 

can be seen as an iterative improvement applied to a population of solutions. 

Multiobjective Evolutionary Algorithms (MOEAs) represent promising 
candidates to obtain a set of efficient portfolios, associated with various 

commitments between the performance and risk objectives of the selected 

portfolio. 

The Markowitz model has been originally proposed as a single-objective 
optimization problem, in which either the expected return is maximized, subject to 

certain established risk, or equivalently, the risk is minimized for an established 

return. 
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The emergence of multiobjective optimization techniques enabled to 
consider the expected return and the risk simultaneously as two distinct goals and 

thus to solve the portfolio optimization problem as a Multi Objective Problem 

(MOP). 
The set of specific investments, called portfolio, are denoted by w = (w1, 

w2, ...,wN), where wi is the proportion (weight) of the capital that is invested in asset 

i. The two objectives will be denoted by f1(w)and f2(w), which denote the risk of the 

portfolio quantified by its variance, σp
2=w'Σw, and the expected return, μp=w'μ, 

respectively. The corresponding model is formulated as follows: 

{
𝑚𝑎𝑥 𝑓1(𝑤) = 𝑤′𝜇 

  𝑚𝑖𝑛  𝑓2(𝑤) = 𝑤′𝛴𝑤
 (6) 

subject to: 

𝑤′1 = 1 
0 ≤ 𝑤𝑖 ≤ 1 

(7) 

where Σ = (σij) is the covariance matrix, with σij the covariance between the assets i 

and j, μ=(μ1,…,μN)' is the vector of expected returns of assets, 1=(1,…,1)' is an N-

vector of ones and N is the number of assets available in the market. 
The equality constraint (called the budget constraint) indicates that the total 

available capital must be invested in the portfolio. 

 

2. Multiobjective optimization metaheuristics included in our 

experiment 
 

The Multiobjective optimization metaheuristics evolved over the years. 
The first generation of algorithms was characterized by the use of sharing, niching 

and a fitness function, combined with a Pareto ranking. The second generation of 

this type of tools introduced new algorithms, in addition to improving other 
existing ones. The concept of elitism was incorporated, which refers to the use of 

an external population to retain non-dominated individuals. The third generation 

extends from addressing multi-objective problems (typically two and three 

objectives) to many-objective problems that involve four or more objectives and 
are also capable of handling more complex kinds of constraints. 

For the purposes of our experiment we have selected 15 multiobjective 

optimization metaheuristics belonging to four different classes (NSGA, MOPSO, 
MOEA/D and SPEA classes): 

A. Algorithms in NSGA class 

1.NSGAII – Nondominated Sorting Genetic Algorithm II 

2.gNSGAII– g-dominance based Nondominated Sorting Genetic 
Algorithm II 

3.ANSGAIII – Adaptive Nondominated Sorting Genetic Algorithm III 

4.NSGAIII – Nondominated Sorting Genetic Algorithm III 
NSGA was one of the first Evolutionary Algorithms used to find multiple 

Pareto-optimal solutions in one single simulation run, but the main criticisms of the 
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NSGA approach was the high computational complexity of nondominated sorting 
specially for large population size, nonelitism approach and the need for specifying 

a sharing parameter. 

Kalyanmoy Deb et al. (2002) proposed an algorithm called NSGA-II, 

which try to reduce the above three drawbacks. In the new algorithm they replaced 
the sharing function with a crowding distance approach. With this improvement 

was observed a better computational complexity and there is no need for any user 

to define parameter to maintain diversity. 
Also, to improve the NSGA-II algorithm, Julián Molinaet al. propose a 

concept called g-dominance. This concept was designed to be used with any 

multiobjective metaheuristic (without modifying the main architecture of the main 

method) and it allows us approximate the efficient set around the area of the most 
preferred point without using any scalarizing function. 

Kalyanmoy Deb et al.(2013) developed the evolutionary multiobjective 

optimization algorithms to solve many-objective optimization problems (four or 
more objectives). Their algorithm was called NSGA-III and was tested on test 

problemswith2 to 15 objectives. NSGA-III uses the basic framework of NSGA-II, 

but unlike NSGA-II, the maintenance of diversity among population members in 
NSGA-III is ensured by supplying and adaptively updating a number of well-

spread reference points.  

At the same time, Himanshu Jain et al. proposed an extension of NSGA-III 

to solve generic constrained many-objective optimization problems. During the 
study they observed that not all specified reference points will correspond to a 

Pareto-optimal solution and to solve this aspect they suggested an adaptive NSGA-

III algorithm (ANSGA-III) that identifies non-useful reference points and 
adaptively deletes them and includes new reference points in addition to the 

supplied reference points. 

B. Algorithms in MOPSO class 

5.MOPSO – Multi-Objective Particle Swarm Optimizer 
6.CMOPSO– Competitive Mechanism based Multi-Objective Particle 

Swarm Optimizer 

7.MMOPSO – Multiple Search Strategies based Multi-Objective Particle 
Swarm Optimizer 

8.MOPSOCD – Multi-Objective Particle Swarm Optimizer using 

Crowding Distance 
Carlos A. CoelloCoello et al. (2002) introduced the so called MOPSO, 

which allows particle swarm optimization (PSO) algorithm to be able to deal with 

multiobjective optimization problems. The approach is population-based and uses 

an external memory (called “repository”) and a geographically-based approach to 
maintain diversity. 

Another attempt to make the PSO algorithm to handle multiobjective 

optimization problems was made by Carlo R. Raquel et al. (2005) and called 
MOPSO-CD. MOPSO-CD incorporate the mechanism of crowding distance into 
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the algorithm of PSO specifically for global best selection and the deletion method 
of an external archive of nondominated solutions. MOPSO-CD also has a 

constraint handling mechanism for solving constrained optimization problems. 

Qiuzhen Lin et al. (2015) proposed a new MOPSO algorithm called 
MMOPSO. The MMOPSO algorithm uses multiple search strategies to update the 

velocity of each particle, which is beneficial for the acceleration of convergence 

speed and for keeping of population diversity. Decomposition approach is 

exploited for transforming multiobjective optimization problems into a set of 
aggregation problems and then each particle is assigned accordingly to optimize 

each aggregation problem.  

Xingyi Zhang et al. (2017) proposed a competitive mechanism based 
multi-objective PSO, termed CMOPSO. With this competitive mechanism-based 

learning strategy, the algorithm is able to achieve a better balance between 

convergence and diversity than original PSO. The main difference lies in the fact 
that the search process is guided by the competitors in the current swarm instead of 

the historical positions. Also, it does not need external archive. 

C. Algorithms in MOEA/D class 

9.DMOEAεC – Decomposition-based Multiobjective Evolutionary 
Algorithm with the ε-Constraint framework 

10.EAG-MOEA/D – External Archive Guided Multiobjective 

Evolutionary Algorithm based on Decomposition 
11.MOEA/D-PaS – Multiobjective Evolutionary Algorithm based on 

Decomposition using Pareto Adaptive Scalarizing strategy 

12.MOEA/D-DRA – Multiobjective Evolutionary Algorithm based on 

Decomposition with Dynamical Resource Allocation 
The Multiobjective evolutionary algorithm based on decomposition 

(MOEA/D) decomposes a multiobjective optimization problem into a number of 

scalar optimizations subproblems and each subproblem is optimized by using 
information only from its several neighbouring subproblems.  

Qingfu Zhang et al.(2009) proposed MOEA/D-DRA using Tchebycheff 

approach as decomposition technic. They define a utility πi for each subproblem i. 
So, computational efforts are distributed to subproblems based on their utilities, in 

comparison with MOEA/D where the subproblems receive about the same amount 

of computational effort. 

Another improvement of MOEA/D was made by XinyeCai et al.(2015) 
and called EAG-MOEA/D. EAG-MOEA/Dworks with an internal (working) 

population and an external archive. Also, uses a decomposition-based strategy for 

evolving its working population and a domination-based sorting for maintaining 
the external archive. So, the domination-based sorting and the decomposition 

strategy can complement each other by using information extracted from the 

external archive to decide which search regions should be searched at each 
generation.  
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Further, Rui Wang et al. (2016) proposed a method called Pareto adaptive 
scalarizing (PaS) to improve the MOEA/D algorithm. The PaS avoids an 

estimation of the Pareto front geometrical shape and is computationally efficient. 

D. Algorithms in SPEA class  

13.SPEA2 – Strength Pareto Evolutionary Algorithm 2 
14.SPEA2+SDE – Strength Pareto Evolutionary Algorithm 2 with Shift-

Based Density Estimation 

15.SPEA/R – Strength Pareto Evolutionary Algorithm based on Reference 
direction 

The SPEA alghoritm was proposed by Zitzleret al.(1999) for finding the 

Pareto-optimal set for multiobjective optimization problems. 

An improved version of SPEA, namely SPEA2, was proposed by Eckart 
Zitzler et al. (2001).  In contrast with its predecessor, this version incorporates a 

fine-grained fitness assignment strategy which takes into account, for each 

individual, how many individuals it dominates and it is dominated by, a density 
estimation technique which allows a more precise guidance of the search process 

and an enhanced archive truncation method which guarantees the preservation of 

boundary solutions.  
After SPEA2, Miqing Li et al. (2014) proposed a shift-based density 

estimation (SDE) strategy for modifying the diversity maintenance mechanism in 

the algorithm SPEA2. The new algorithm was called SPEA2+SDE. Their objective 

was to develop a general modification of density estimation in order to make 
Pareto-based algorithms suitable for many-objective optimization. SDE covers 

both the distribution and convergence information about individuals. 

Shouyong Jiang et al. (2017), by introducing an efficient reference 
direction-based density estimator, a new fitness assignment scheme, and a new 

environmental selection strategy, for handling both multiobjective and many-

objective problems, proposed a new improvement to SPEA algorithm, called 

SPEA/R. SPEA/R inherits the advantage of fitness assignment of SPEA2 in 
quantifying solutions’ diversity and convergence in a compact form, but replaces 

the time-consuming density estimator by a reference direction-based one, and also 

takes into account both local and global convergence. 
The aforementioned algorithms have been adapted and implemented in 

Matlab to solve the Markowitz portfolio selection problem as a bi-objective 

optimization problem with the default constraints defined in section 1. 
 

3. Performance Metrics 
 

In the context of multiobjective optimization it is not possible to find or 
enumerate all elements of the Pareto front. Hence to solve a multiobjective 

problem, one must look for the best discrete representation of the Pareto front. 

Evaluating the quality of a Pareto front approximation is not trivial. To compare 



 

 
 

 

 

Florentina-Mihaela Apipie, VasileGeorgescu 

____________________________________________________________ 

46 

DOI: 10.24818/18423264/53.3.19.03 

multiobjective optimization algorithms, the choice of good performance metrics is 
crucial.  

Various performance metrics for measuring the quality of Pareto-optimal 

sets have been reported for MOEAs in the literature. Considering an approximated 
front A and a reference front R in the objective space, the performance metrics can 

be grouped as:  

• Cardinality metrics: the cardinality of A refers to the number of non-

dominated points that exists in A. Intuitively, a larger number of points is preferred. 
• Convergence (accuracy) metrics: measure how close the approximated 

front A of non-dominated points is from the true Pareto front (PFtrue) in the 

objective space. If PFtrue is unknown, a reference front R is considered instead. 
• Diversity metrics: check whether the points in the obtained non-

dominated front are as diverse as possible; both the distribution and spread of the 

Pareto front approximation are to be evaluated. The distribution refers to the 
relative distance among points in A, while the spread refers to the range of values 

covered by the points in A (the extent of the approximated front should be 

maximized, i.e., A should contain the extreme points of the true Pareto front). 

The table below presents some of the most used performance metric: 

Table 1. The performance metrics 

Metric Type Arity 

Hypervolume(HV) Accuracy and Diversity Unary 

Generational distance(GD) Accuracy Unary 

Inverted generational distance(IGD) Accuracy and Diversity Unary 

Averaged Hausdorff distance (∆p) Accuracy and Diversity Unary 

Spread:Delta indicator(∆) Diversity Unary 

Two set coverage(C) Accuracy and Diversity Binary 

Spacing(S) Diversity Unary 

 

Hypervolume (HV) is an indicator of both the convergence and diversity 

of an approximation front. Given a set X of solutions and their image A in the 
objective space, the hypervolume of A is the volume generated by the relation of 

the points of the Pareto front obtained with a given reference point, called the nadir 

point. The latter is usually chosen to be the worst values reached for each objective 
of the problem, thus guaranteeing that all the solutions of the obtained front will 

not be dominated by that corresponding to the nadir point. The HV of X is the sum 

of the volumes (Vx) formed between each point in A and the reference point: 

𝐻𝑉 = ⋃ 𝑉𝑥

𝑥𝑖∈𝑋

 
(8) 



 

 

 

 

 
Assessing and Comparing by Specific Metrics the Performance of 15 Multiobjective 

Optimization Metaheuristics when Solving the Portfolio Optimization Problem 

____________________________________________________________ 

47 

DOI: 10.24818/18423264/53.3.19.03 

Since it uses the nadir point as a reference, the HV calculation does not 
depend on the availability of an optimal Pareto front. One of the main advantages 

of hypervolume is that it is able to capture in a single number both the closeness of 

the solutions to the optimal set and, to some extent, the spread of the solutions 

across objective space. 

 
Figure 2. Hypervolume calculation for a bi-objective minimization problem 

 
Generational distance (GD) is used to measure the proximity of the 

approximate front A found by the algorithm from a reference front R, which is 

either the true Pareto front or a very good approximation to it. The distances 

between each objective vector a in A and the closest objective vector r in Rare 
averaged over the size of A. Formally, 

𝐺𝐷𝑝(𝐴, 𝑅) =
1

|𝐴|
(∑ min

𝑟∈𝑅
𝑑(𝑟, 𝑎)𝑝

𝑎∈𝐴

)

1

𝑝

,      𝑑(𝑎, 𝑟)√ ∑ (𝑎𝑚 − 𝑟𝑚)2

𝑀

𝑚=1

 (9) 

where M is the number of objectives. When p=2, GD2(A,R) is the average 

Euclidean distance. 
The GD metric is fast to compute and correlates with convergence to the 

reference front, but is very sensitive to the number of points found by a given 

algorithm. Thus, large approximation fronts of poor quality may be ranked highly 
by GD. 

The inverted generational distance (IGD) was proposed as an 

improvement over the GD based on the very simple idea of reversing the order of 

the fronts considered as input by the GD, i.e., IGD(A, R) = GD(R, A) 

𝐼𝐺𝐷𝑝(𝐴, 𝑅) =
1

|𝑅|
(∑ min

𝑎∈𝐴
𝑑(𝑟, 𝑎)𝑝

𝑟∈𝑅

)

1/𝑝

 
(10) 

In other words, the IGD equals the GD metric when computing the 

distance between each objective vector in the reference front and its closest 
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objective vector in the approximation front, averaged over the size of the reference 
front. 

The main advantages of the IGD measure are twofold. One is its 

computational efficiency, the other is its capability to show the overall quality of an 
obtained approximation front A (i.e., its convergence to the Pareto front and its 

diversity over the Pareto front). 

The averaged Hausdorff distance (∆p) was proposed as an attempt to 

address potential drawbacks of the IGD. It is defined as an averaged Hausdorff 
distance metric, controlled by the parameter p. In particular, larger values of p 

mean stronger penalties for outliers. The formal definition of ∆p is given as 

follows: 

∆𝑝(𝐴, 𝑅)  =  𝑚𝑎𝑥 (𝐼𝐺𝐷𝑝(𝐴, 𝑅), 𝐼𝐺𝐷𝑝(𝑅, 𝐴)) (11) 

Spread metric (Δ) examines how evenly the solutions are distributed 

among the approximation fronts in objective space. First, it calculates the 

Euclidean distance between the consecutive solutions in the obtained non-
dominated set of solutions. Then it calculates the average of these distances. After 

that, from the obtained set of non-dominated solutions the extreme solutions are 

calculated. Finally, using the following metric it calculates the nonuniformity in the 

distribution: 

Δ =
𝑑𝑓 + 𝑑𝑙 + ∑ |𝑑𝑖 − 𝑑̅|𝑛−1

𝑖=1

𝑑𝑓 + 𝑑𝑙 + (𝑛 − 1)𝑑̅
 (12) 

where di is the Euclidean distance between consecutive solutions df and dl are the 

Euclidean distances between the extreme solutions and the boundary solutions of 

the obtained nondominated set. The parameter 𝑑̅  is the average of all distances di, i 
= 1, 2, ..., (n-1), where n is the number of solutions on the best nondominated front. 

A low value of Δ metric indicates wide and uniform spread out of the solutions 
across the Pareto front. Thus, Δ = 0 indicates that the approximation front is as 

uniformly distributed as possible. 

 
Figure 3. Spread metric 
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The spacing metric (S) was proposed by Schott (1995) and measures the 
dispersion of the obtained approximate front in comparison with the optimal Pareto 

front. It is given by the following relationship: 

𝑆 = √
1

𝑛 − 1
∑(𝑑𝑖 − 𝑑̅)2

𝑛

𝑖=1

 (13) 

where di is the Euclidean distance in objective space between point i of the 

obtained approximate front and point j most closely belonging to the Pareto 

optimal front; 𝑑̅is the mean of all di and n is the number of solutions present in the 
obtained approximate front. The spacing must be as small as possible for the 

solution set to be of superior quality. A value of zero for this metric indicates that 
the solutions in the approximate front are equidistantly spaced. 

Coverage of two sets (C) metric was proposed by Zitzler and Thiele 

(1999) and compares the quality of two non-dominated sets. Let A and B be two 

different sets of non-dominated solutions, then the C metric maps the ordered pair 
(A, B) into the interval [0, 1]: 

𝐶(𝐴, 𝐵) =
|{𝑏 ∈ 𝐵|∃𝑎 ∈ 𝐴: 𝑎 ≻ 𝑏 𝑜𝑟 𝑎 = 𝑏}|

|𝐵|
 (14) 

where a and b are candidate solutions of sets A and B respectively and a≻b means 

that a dominates b. If C(A, B) = 1, all the candidate solutions in B are dominated 

by at least one solution in A. If C(A, B) = 0, no candidate solutions in B is 
dominated by any solution in A. 

 

4. Experimental results 
 
In the experimental work addressed in this paper, the optimal portfolios in 

the sense of Pareto are selected from a universe of 20 assets listed on the Bucharest 

Stock Exchange. The data used is the quoted shares listed from January 1, 2012 to 
December 14, 2018. The results of applying the 15 metaheuristics to solve the 

Markowitz’s Portfolio Optimization Problem are summarized by means of a series 

of graphics and tables. Apart from specific settings, all 15 metaheuristics have in 

common the following settings: Population size = 100 and Maximum number of 
function evaluations = 50000. 

We choose to present in more detail the results for two metaheuristics out 

of 15: CMOPSO that performs better with respect to most of the performance 
metrics for our datasets and the problem at hand, and MOPSO that appears to be 

the worst performer in the same context. Finally, we will summarize the results for 

all 15 algorithms and present an overall rank from multiple ranked lists. 
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4.1.CMOPSO (Competitive Mechanism based Multi-Objective 

Particle Swarm) – the best performer 

As can be seen in Fig. 4, CMOPSO performs very well in terms of both 

convergence (the computed Pareto front is very close to the true Pareto front) and 
diversity (the points of the computed Pareto front are uniformly distributed along 

the true Pareto front).  

 

Figure 4.Comparing True Pareto Front with Pareto Front obtained using 

CMOPSO 

The Performance metrics are shown in Figure 5 

 
Figure 5. Performance metrics for CMOPSO 
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Apart from the Efficient frontier computed using CMOPSO, Fig. 6. Shows 
the 20 assets constituting the universe from which the optimal portfolios are 

formed. The riskiest portfolio is that one containing only one asset (TBM). 

Figs. 7, 8 and 9 display various numerical results: a Pareto front summary, 

the daily and annualized risks and returns and the portfolio weights computed using 
CMOPSO. 

 
Figure 6. Efficient frontier using CMOPSO and the 20 assets constituting the 

universe 

 

 
Figure 7. Pareto front summary for CMOPSO 
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Figure 8. Daily and annualized risks and returns for CMOPSO 

 

 
Figure 9. Portofolio weights for CMOPSO 

 

 4.2.MOPSO (Multi-Objective Particle Swarm Optimizer) - the worst 

performer 
 

Fig. 10 shows why MOPSO is the worst performer when using the same 

running settings for all metaheuristics (in our case, Population size = 15 and 
Maximum number of function evaluations = 50000). Indeed, we observe that, 

MOPSO cannot approximate well the efficient frontier in term of both convergence 

(the computed Pareto front departs significantly from the true Pareto front) and 

diversity (the points of the computed Pareto frontier does not distribute uniformly 
along the true Pareto frontier, but concentrate only in a part of the two-dimensional 

objective space).  
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However, it is worth to mention that increasing default values for 
Population size and Maximum number of function evaluations, MOPSO becomes 

capable to approximate well the true Pareto front. So MOPSO converges much 

slowly, compared to CMOPSO. 

 

Figure 10. Comparing True Pareto Front with Pareto Front obtained using 

MOPSO 
The Performance metrics are shown in Figure 11 

 

Figure 11. Performance metrics for MOPSO 
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Fig. 12 shows the inaccurate representation of Efficient frontier using 
MOPSO and the 20 assets constituting the universe. Figures 13, 14 and 15 display 

various numerical results. 

 

Figure 12. Inaccurate representation of Efficient frontier using MOPSO and 

the 20 assets constituting the universe 

 

Figure 13. Pareto front summary for MOPSO 
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Figure 14. Daily and annualized risks and returns for MOPSO 

 

 
Figure 15. Portfolio weights for MOPSO 

 
A summary of the most significant performance metrics is given in the 

table 2. We marked in bold the best value obtained for each metric.  

In table 3 we present a score for the results obtained by our 15 algorithms 
tested. The best position was rated with 1 (positions was numbered from 1 to 15) 

for each metric. The final score was obtained by summarizing the position obtained 

by each algorithm for all those 6 metrics presented in the Table 2. The best 

performance was obtained by CMOPSO and the worst performer was MOPSO. 
 



 

 
 

 

 

Florentina-Mihaela Apipie, VasileGeorgescu 

____________________________________________________________ 

56 

DOI: 10.24818/18423264/53.3.19.03 

Table 2. The performance metrics 

Metrics 

 

 
Algorithm 
Name 

Averaged 

Hausdorff 

distance 

(min) 

Generational 

distance 

(min) 

Hypervolume 

(max) 
Inverted 

generational 

distance 

(min) 

Spacing 

(min) 
Spread 

(min) 

 
DMOEAeC 0.0026 2.96E-05 0.5387 0.0026 0.0029 0.3561 

 
EAGMOEAD 0.0021 8.46E-05 0.579 0.0021 0.0018 0.2686 

 
MOEADDRA 0.0091 1.90E-05 0.5817 0.0091 0.0208 1.2295 

 
MOEADPaS 0.0030 4.87E-05 0.5895 0.0030 0.0034 0.4625 

 
CMOPSO 0.0016 7.47E-05 0.5857 0.0016 0.0011 0.1351 

 
MMOPSO 0.0019 9.13E-05 0.5723 0.0019 0.0024 0.3541 

 
MOPSO 0.0674 0.0028 0.5177 0.0674 0.0013 0.9856 

 
MOPSOCD 0.0021 1.40E-04 0.5829 0.0021 0.0021 0.3092 

 
ANSGAIII 0.0025 6.19E-05 0.5508 0.0025 0.0029 0.3108 

 
gNSGAII 0.0022 1.17E-04 0.561 0.0022 0.0019 0.3246 

 
NSGAII 0.0024 1.16E-04 0.5448 0.0024 0.0023 0.3495 

 
NSGAIII 0.0025 5.35E-05 0.5527 0.0025 0.0021 0.2939 

 
SPEA2 0.0032 1.26E-04 0.5851 0.0032 0.0036 0.3126 

 
SPEA2SDE 0.0027 6.25E-05 0.5382 0.0027 0.0023 0.4844 

 
SPEAR 0.0024 2.60E-05 0.5501 0.0024 0.0034 0.3536 

 

               Table 3. Scores obtained for each algorithm 

Algorithm name Score Algorithm name Score 

CMOPSO 14 MOEADPaS 44 
EAGMOEAD 26 NSGAII 47 
MOPSOCD 33 DMOEAeC 49 
NSGAIII 34 SPEA2 51 
MMOPSO 38 MOEADDRA 54 
gNSGAII 39 SPEA2SDE 56 
ANSGAIII 41 MOPSO 70 

SPEAR 41   
 

5. Conclusions and further work 

 
In this paper we adapted, implemented in Matlab, assessed and compared 

the performance of 15 metaheuristics belonging to four different classes (NSGA, 

MOPSO, MOEA/D and SPEA classes) when applying to the Markowitz’s Portfolio 
Optimization Problem. 
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The fact there is no universally efficient algorithm is consensually accepted 
in the realm of optimization algorithms in general, and multiobjective optimization 

metaheuristics in particular. Several no Free Lunch theorems have been proposed 

under specific assumptions (e.g., (Schumacher et al., 2001) proved that no 

optimization technique has performance superior to any other over any set of 
functions closed under permutation). However, in practice some algorithms 

perform better than others for a specific problem, motivating the effort of finding 

the right algorithms for the right type of problem. A substantial improvement has 
been also obtained in the design principles of metheuristics: thus, introducing an 

external archive of nondominated solutions can lead to multiobjective optimizers 

that are better than others. 

In general, our experimental work shows than some representatives of the 
new generations of multiobjective optimization metaheuristics perform better than 

the older and selecting them can be beneficial in solving problems such as Portfolio 

Optimization. On the other hand, there is no a commonly accepted framework for 
performance comparison of optimization algorithms. In section 3 we overviewed a 

set of performance metrics to measure the convergence (accuracy) and/or the 

diversity of the Pareto front approximation when compared with the true Pareto 
front. However, expecting all these metrics to produce similar rankings is unlikely. 

The overall performance of the selected metaheuristics for the problem at hand can 

only be assessed by the aggregation of single-criterion rankings. However, the 

aggregation method should be carefully chosen to avoid the Condorcet Paradox 
that may occur in such cases. 

Portfolio Optimization problems with more complex constraints are also 

intended to be addressed using Penalty Function and Repair strategies as well as 
metaheuristics incorporating a constraint handling mechanism (e.g., ANSGA-III 

and MOPSO-CD). 
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